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Recent advances in deep learning-based layout hotspot detection have made remarkable progress in identifying potential

defect patterns at early design stages. However, most existing methods rely on supervised learning, which requires manual

identiication of pre-deined hotspots and leads to considerable labeling efort. Moreover, design houses often struggle to

obtain a suicient number of labeled hotspot samples, limiting the applicability and scalability of such methods. In this article,

we introduce a novel approach, termed you only need non-hotspot (YONN), which to the best of our knowledge, is the irst

unsupervised and training-free framework for layout hotspot detection. The proposed method mitigates the dependence

on labeled hotspot data by leveraging memorized prototypes and a query-based inference mechanism. Speciically, YONN

employs a CNN-based prototype generation network to extract multi-scale, ine-grained representations of layouts. During

inference, a combination of shape-aware and topology-aware query mechanisms facilitates precise pixel-wise matching

between test layout and memorized prototypes. To further enhance YONN’s eiciency and scalability, we propose a prototype

sampling strategy that integrates density-based clustering techniques, signiicantly reducing the scale of the prototypes.

Experimental results indicate that YONN achieves performance within 10% of leading state-of-the-art supervised learning

methods, despite operating in a fully unsupervised setting without access to hotspot data. As an optional extension, YONN

surpasses existing state-of-the-art approaches using only 30% hotspot labels. Notably, YONN is a training-free framework that

enables on-the-ly adaptation by directly incorporating novel samples into the prototype bank, thereby supporting eicient

and scalable learning within design for manufacturability worklows.
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1 Introduction

The continuous scaling of transistor feature sizes and the increasing complexity of integrated circuits have

introduced signiicant challenges in Design for Manufacturability (DFM). Among various DFM tasks, lithographic

hotspot detection plays a critical role in identifying potentially defective layout patterns at the early stages of

the design low. Traditional approaches to hotspot detection primarily rely on lithography simulations, pattern

matching techniques, and more recently, machine learning (ML)-based methods [54]. Lithography simulation

methods aim to accurately model the photolithographic process using detailed mathematical and physical

representations, enabling precise identiication of lithographic hotspots during design validation [31]. However,

full-chip lithography simulations are computationally intensive and require extensive knowledge of process

and design rules, making them less practical for modern and rapidly evolving technology nodes [34, 38]. In

contrast, pattern matching techniques [4, 19, 50, 57] attempt to detect hotspots by comparing layout regions

against a pre-deined library of known hotspot patterns. Although these methods are computationally more

eicient, they sufer from key limitations: constructing a comprehensive and representative hotspot library is

inherently challenging, and the eicacy of pattern matching depends heavily on the quality of feature selection

and matching strategies employed [20].

Fig. 1. Illustration of the current DL-based methods. To develop an efective detection model, a labeled dataset comprising

both hotspot and non-hotspot instances must first be constructed.

Fig. 2. Illustration of our method, which operates without requiring any labeled hotspot paterns and training.

In recent years, ML and deep learning (DL) techniques have been increasingly used in DFM applications

[6, 48, 60], demonstrating signiicant advancements in layout hotspot detection [9, 18, 22, 51, 59, 61]. Current

DL-based approaches to layout analysis typically convert layout patterns into representations suitable for speciic

neural network architectures. A common choice is to render the layout into images and apply convolutional

neural networks (CNNs) for feature extraction [5, 14, 15, 21, 28, 33, 45]. However, due to the high spatial resolution

of the layout pattern (e.g. 1 nm), the resulting image representations are extremely large (e.g. 4800 × 4800). To
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Fig. 3. Comparison between existing DL-based method and our method for handling new design updates.

accommodate the input constraints of CNNs, existing methods often resize these images, resulting in a signiicant

loss of critical spatial detail. To address this challenge, several methods adopt the squish pattern representation

[16] to capture the layout topology, integrating it with CNN-based methods [11, 26, 55, 56]. The squish pattern

mitigates the sparsity inherent in traditional image-based representations, signiicantly reducing the input

resolution and information loss. In parallel, other research eforts have explored graph-based representations of

layouts, enabling the application of graph neural networks (GNNs) to capture both the structural and relational

aspects of layout pattern polygons [10, 23, 39, 52]. However, these methods necessitate the decomposition of

polygons into multiple rectangular components, which increases computational complexity. With the rapid

advancements in language models, a novel approach [9, 49] has emerged that represents layout information

as sequences of language tokens. In this setting, polygons are encoded by category, position, and shape, and

a language model is used to classify the resulting sequence representation of a layout clip. While this ofers

a promising alternative, it is resource-intensive and depends on prior knowledge for polygon categories[52].

Accordingly, this article employs the adaptive squish pattern as a foundational component in the construction of

the prototype bank.

Moreover, all the methods mentioned above rely on supervised learning to model a decision boundary that

distinguishes between hotspot and non-hotspot samples. As shown in Figure 1, constructing an efective training

dataset is crucial for developing a robust classiication model. This dataset must encompass both hotspot and

non-hotspot patterns to ensure comprehensive learning. However, in practical design worklows, only a limited

subset of layout hotspots, which are directly correlated with yield degradation, are reported back to design

houses after fabrication. This delayed feedback signiicantly increases the time required to build a representative

and high quality training dataset. While rule-based checking and lithography simulation can identify certain

hotspot patterns, the number of such patterns remains signiicantly smaller than that of non-hotspot samples.

This signiicant class imbalance poses a challenge for model training, often leading to biased or suboptimal

learning results [15, 40]. Furthermore, as products are frequently iterated and updated within design houses, the

corresponding layout iles are continuously revised. In most existing hotspot detection, as shown in Figure 3(a),

each new iteration requires a new model to be retrained from scratch. At the early stage of a new technology

node, the availability of labeled hotspot and non-hotspot data is often severely limited[7]. Given the continuous

accumulation of data and repeated cycles of product iterations, these methods become increasingly ineicient

and unsustainable over time.

In this article, to overcome the practical limitations associated with existing lithographic hotspot detection

methods, we propose a novel hotspot detection framework, termed you only need non-hotspot (YONN). In contrast

to prior methods, YONN can do without hotspot-labeled samples during model development, relying exclusively

ACM Trans. Des. Autom. Electron. Syst.
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on non-hotspot data to achieve accurate and robust hotspot detection. To better align with practical deployment

scenarios where a limited number of hotspot labels may become available, we incorporate an optional reinement

that leverages these labels to further enhance detection performance. Furthermore, YONN supports on-the-ly

adaptation during design iterations, as it operates without any training requirements. As shown in Figure 2,

YONN introduces a memorized prototype bank and a query-based inference mechanism to enable unsupervised,

training-free hotspot detection. At its core, YONN employs an adaptive squish pattern representation to model

layout patterns, coupled with a ine-grained prototype generation network for extracting multi-level prototype

features. During inference, a shape-aware query and a topology-aware query are used to evaluate the test

sample against the memorized prototype bank, enabling reliable classiication of hotspots and non-hotspots. To

mitigate storage overhead and computational complexity, we introduce a prototype sampling strategy based on

clustering techniques, which signiicantly reduces the size of the prototype bank while maintaining competitive

detection performance. Furthermore, as shown in Figure 3(b), YONN accommodates design revisions eiciently.

When encountering new design updates, it simply extracts prototypes from updated non-hotspot samples

and integrates them into the existing prototype bank, thus ensuring scalable and adaptive hotspot detection

throughout the design process. While our primary formulation assumes no access to labeled hotspot data, YONN

supports an optional reinement for scenarios with a limited hotspot labeling. Speciically, YONN constructs a

supplementary hotspot prototype bank and integrates its scores with those from the non-hotspot bank to further

boost performance. The main contributions of this article are summarized as follows:

• To the best of our knowledge, YONN is the irst approach to tackle layout hotspot detection in an unsuper-

vised and training-free manner. In addition, it explicitly addresses the challenge of adapting the hotspot

detector in response to iterative design modiications. Without requiring any pre-labeled hotspot data,

YONN demonstrates a preliminary capability to distinguish between hotspot and non-hotspot patterns.

When a limited amount of hotspot data is available, YONN further enhances its discrimination performance,

achieving more accurate classiication between hotspot and non-hotspot samples.

• We introduce a memorized prototype bank to store representative feature embeddings of patterns. To

enhance granularity during the subsequent query phase, we introduce a ine-grained prototype generation

network that preserves multi-scale and pixel-wise prototype representations, thereby improving the

precision and robustness of the detection process.

• To further improve the reliability of the query stage, we propose two query strategies, which complement

the shape-aware query with a topology-aware query operation. It is particularly efective in improving the

detection accuracy of challenging hotspot instances.

• To improve scalability and reduce computational overhead, we propose a clustering-based prototype

sampling strategy that reduces the size of the prototype bank by up to 5×, while maintaining competitive

detection performance.

The remainder of this article is structured as follows. Section 2 introduces the foundational concepts of unsu-

pervised hotspot detection and presents the layout representation employed by YONN. Section 3 describes the

proposed algorithm, including the procedures for prototype generation and query formulation. Section 4 reports

the experimental results obtained from three benchmark datasets, and Section 5 concludes the article.

2 Preliminary

2.1 Problem Formulation

The lithographic process uses a photomask to precisely transfer circuit layout patterns onto semiconductor

wafers. However, certain regions within the layout, known as lithographic hotspots, are highly sensitive to

process variations that can signiicantly afect manufacturing yield. [10]. Therefore, the accurate identiication and

efective mitigation of these hotspots are essential to enhance design robustness and ensure manufacturability.

ACM Trans. Des. Autom. Electron. Syst.
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Fig. 4. Illustration of adaptive squish patern representation.

Hotspot detection is typically formulated as a binary classiication problem that aims to distinguish between

hotspot and non-hotspot layout clips. In the early pre-silicon design stages, veriied hotspot labels are often

unavailable, whereas large volumes of non-hotspot data can be collected eiciently. Furthermore, rapid design

iterations and engineering change orders (ECOs) frequently produce a wide array of new layout variants without

corresponding hotspot labels. This leads to a scenario where hotspot feedback is both limited and delayed, thereby

motivating the development of detection methods that can learn efectively using only non-hotspot data. In this

article, we propose a novel unsupervised hotspot detection framework that performs hotspot classiication using

only non-hotspot data. Compared to supervised approaches, the proposed method signiicantly reduces data

requirements and ofers greater lexibility for adaptation to future design updates. The following deinitions and

metrics are used to evaluate the performance of an unsupervised hotspot detector.

Deinition 1 (Accuracy). Accuracy (ACC) is deined as the proportion of correctly classiied hotspot instances

to the total number of ground truth hotspot instances. Formally,

��� =

|�� |

|�� | + |�� |
, (1)

where |�� | denotes the number of true positives (correctly identiied hotspots), and |�� | denotes the number of

false negatives (missed hotspots).

Deinition 2 (False Alarm Rate). False Alarm Rate (FAR) refers to the proportion of non-hotspot instances

incorrectly classiied as hotspots. It is computed as

��� =

|�� |

|�� | + |�� |
, (2)

where |�� | denotes the number of false positives (non-hotspots classiied as hotspots), and |�� | denotes the

number of true negatives (correctly identiied non-hotspots).

With these metrics, we formulate the unsupervised hotspot detection problem as follows:

Problem 1 (Unsupervised Hotspot Detection). Given a dataset composed primarily or exclusively of layout

clips containing non-hotspot patterns, our objective is to develop a detector that maximizes detection accuracy

while minimizing the false alarm rate, despite having no or very few conirmed hotspot examples for training.

2.2 Layout Representation

During the design phase, layout iles are typically composed of a series of polygons. However, large-scale layouts

tend to be spatially sparse, resulting in signiicant computational overhead and an increased risk of overitting

when processed by DL-based models. To address these challenges, the squish pattern layout representation [16],

ACM Trans. Des. Autom. Electron. Syst.
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Fig. 5. Overview of YONN, consisting of the prototype generation stage and query stage.

illustrated in Figure 4, transforms the layout into a topological matrix � along with associated geometric vectors

Δ� and Δ� . This representation reduces computational complexity while preserving critical design features.

Speciically, the squish pattern discretizes the layout space by meshing along polygon edges, producing a binary

topological matrix in which each element indicates the presence or absence of a polygonal feature. Simultaneously,

the physical distances between adjacent sweep lines in both the �- and�-directions are encoded into the geometric

vectors. The resulting topological matrices and geometric vectors are variable in length, depending on layout

complexity. To enable compatibility with standard DL-based models, which typically require ixed-size inputs,

we adopt the adaptive squish pattern strategy proposed in [55]. This approach normalizes the representation by

padding the geometric vectors, thereby converting variable-size patterns into ixed-dimension square matrices.

This facilitates seamless integration with convolutional and transformer-based neural network architectures

while maintaining idelity to the original layout information.

3 Algorithms

3.1 Overview

As shown in Figure 5, the YONN architecture is speciically developed to enable unsupervised, training-free

hotspot detection via a two-stage process: prototype generation and query evaluation. In the prototype generation

stage, the model receives a dataset consisting of � non-hotspot layout patterns. These input patterns are irst

converted into adaptive squish representations to ensure consistent formatting, denoted as {��}
�
�=1 ∈ R

�×3×�×� ,

where � represents the resolution of the squish-transformed pattern. YONN then employs a frozen, pre-trained

convolutional neural network F (·) to extract hierarchical features from the inputs. The resulting feature maps

at layer � are expressed as � � ∈ R
�×��×��×�� , where �� ,�� , and �� correspond to the number of channels,

width, and height of the feature maps at the �-th layer, respectively. Consistent with prior indings[27, 35] that

subtle geometric modiications can determine hotspot presence, YONN retains all pixel-level features in the

prototype bank to comprehensively represent normal patterns and account for minor variations. To reduce

ACM Trans. Des. Autom. Electron. Syst.
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Fig. 6. Illustration prototype sampling strategy.

storage and computational overhead during the query stage, a prototype sampling strategy is employed. This

strategy selectively stores a subset of features �� ∈ R�×��×��×�� from each layer into a prototype bank, controlled

by a sampling parameter � .

During the query stage, as shown in Figure 5(b), a query layout �� is processed through the same CNN

F (·) to obtain hierarchical features {�� }�
�=1

, where �� ∈ R��×��×�� corresponds to the feature representation

at layer � . Similar to prototype generation, pixel-level features from the query are compared with those in the

prototype bank. A set of hierarchical hotspot likelihood maps {�� }�
�=1

is then computed using a combination of

shape-aware and topology-aware query mechanisms that compare �� against the stored prototypes �� across

all layers and spatial positions. The inal hotspot decision is made by aggregating the multi-layer hotspot maps

using an aggregation function Agg(·). A query layout is classiied as a hotspot if the aggregated score exceeds a

predeined hotspot threshold �ℎ:

Agg({�� }��=1) ≥ �ℎ, (3)

where � is the total number of CNN layers used for evaluation. This approach enables YONN to construct a

prototype-based decision boundary that efectively separates hotspot and non-hotspot patterns without requiring

supervised training.

3.2 Prototype Sampling Strategy

As shown in Figure 5(b), a key criterion in determining whether a query layout is a hotspot is the distance

between its feature distribution and the feature distribution in the prototype bank. Intuitively, a prototype bank

that captures a more comprehensive and representative distribution is expected to get higher detection accuracy

during the query stage. However, modern chip layouts in advanced design environments contain a large number

of complex and densely packed polygons. This results in an extremely large and diverse set of non-hotspot layout

patterns. Consequently, maintaining prototypes for the full range of non-hotspot patterns incurs prohibitive

storage costs, while the computational burden of query time similarity evaluations becomes impractical.

To address this challenge, we propose a prototype sampling strategy that efectively reduces the scale of the

prototype bank while preserving the representational prototypes. Speciically, as shown in Figure 6, given the

feature maps � � extracted from the �-th layer of the pre-trained network F (·), we perform pixel-wise sampling

to generate reined prototypes. Let the features of � layouts at spatial coordinates (�,�) be represented as

{� �
�,(�,�)

}��=1. To extract representative prototypes, we employ the HDBSCAN clustering algorithm [3] on these

pixel-wise features. HDBSCAN is particularly well-suited to this task due to its ability to discover clusters of

varying densities without requiring the number of clusters to be speciied a priori. Let ��
(�,�)

denote the set of all

clusters of HDBSCAN, �� ∈ �
�
(�,�)

denote the �-th cluster identiied by HDBSCAN. For each cluster �� , we compute

ACM Trans. Des. Autom. Electron. Syst.
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the representative center prototype �� ∈ �
�
(�,�)

from its high-density cluster as follows:

�� = argmax
� ∈��

(
︁

� ′∈��

Sim(�, � ′)), (4)

where ��
(�,�)

is the collected center prototypes after density center sampling and Sim(·, ·) is the similarity

function deined as:

Sim(X, Y) =
X · (Y)T

∥X∥ · ∥Y∥
. (5)

Furthermore, to account for edge cases where the distribution of non-hotspot features is highly sparse or

exhibits substantial heterogeneity, we incorporate a fallback mechanism that guarantees prototype coverage.

Speciically, when HDBSCAN fails to identify valid clusters at a given spatial coordinate (i.e., |��
(�,�)
| = 0),

the algorithm defaults to a global feature aggregation strategy. In this case, all pixel features {� �
�,(�,�)

}��=1 are

aggregated, and the representative prototype is selected using the same similarity-based criterion deined in

Equation (5). This ensures that representative prototypes are still retained from the entire pixel-wise feature,

preventing information loss in under-represented regions of the feature space.

As shown in Figure 2(a), selecting only the densest center from each cluster as a representative prototype

may lead to an overly compact decision boundary. This compactness poses a risk of misclassiication, especially

in scenarios where inter-cluster variance is minimal and peripheral prototypical features are excluded from

representation. Hence, to address this limitation and enhance the completeness of the prototype representation, we

design a secondary sampling mechanism that samples additional prototypes from cluster boundaries. Speciically,

given the set of initial prototypes ��
(�,�)

, we iteratively identify the pixel-wise features that are furthest from the

current prototypes and add them to the prototype bank. The additional prototypes �′ are computed as:

�′ = argmin

� ∈��
(�,�)

(
︁

� ′∈��
(�,�)

Sim(�, � ′)), (6)

where ��
(�,�)

denotes the set of candidate features not already included in the center prototype bank. This process

continues until the prototype bank reaches the desired size � . This auxiliary sampling process efectively expands

the decision boundary coverage and improves the YONN’s ability to discriminate between borderline hotspot

and non-hotspot patterns. The detail of the prototype sampling process is in Algorithm 1.

3.3 uery Mechanisms

In the query stage, we utilize the prototype bank to construct a robust decision boundary. Given the hierarchical

query features {�� }�
�=1

extracted by the frozen CNN F (·), and the locally stored high-quality prototype bank

{�� }�
�=1

, we perform a layer-wise and pixel-wise similarity comparison to classify the query layouts. Speciically,

during the design phase, preserving shape information and layout topology is critical for accurately identifying

potential layout hotspots under speciic design rules [48, 53]. Each prototype feature stored at a given coordinate

in the prototype bank retains the shape characteristics within its receptive ield. To efectively exploit this,

we propose a shape-aware query mechanism that matches the query vectors at each position of the query

features to their corresponding prototypes based on local feature similarity. Furthermore, YONN incorporates a

topology-aware query mechanism to improve the detection of topology hotspots. In this framework, the features

of the four-neighbor prototypes are utilized to match against the corresponding four-neighbor search regions

within the query features, thereby enabling robust topology-aware classiication at each query location.

ACM Trans. Des. Autom. Electron. Syst.
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Algorithm 1 Prototype Sampling Process

Require: The features {� �
�,(�,�)

}��=1 of � non-hotspot layouts at (�,�), the desired size � of inal prototype bank;

Ensure: The collected prototypes bank ��
(�,�)

;

1: Initialize ��
(�,�)
← {};

2: ��
(�,�)
← ������� ({� �

�,(�,�)
}��=1);

3: if |��
(�,�)
| = 0 then

4: ��
(�,�)
← {� �

�,(�,�)
}��=1;

5: end if

6: for each �� in �
�
(�,�)

do

7: �� ← Computing the representative prototype in �� by Equation(4)(5);

8: ��
(�,�)
← ��

(�,�)
∪ {�� };

9: end for

10: while |��
(�,�)
| < � do

11: �′ ← Computing the boundary prototype by Equation(6);

12: ��
(�,�)
← ��

(�,�)
∪ {�′};

13: end while

14: return ��
(�,�)

.

Fig. 7. Illustration of shape-aware query mechanism.

3.3.1 Shape-aware uery. As shown in Figure 7, given a query vector ��
(�,�)

with coordinates (�,�) in the

�-th layer query feature and the corresponding prototype feature �� at the same layer, the shape-aware query

mechanism aims to identify the most similar prototype and subsequently compute the hotspot likelihood map.

Notably, recognizing that layout patterns are location-independent, we introduce a radius � to expand the search

space during the query process. This expansion mitigates potential mismatches caused by location-ixed prototype

comparisons. The shape-aware search space Ω�
�

(�,�)
is mathematically deined as follows:

Ω
��

(�,�) = {�� ∈ �
�
(�+�,�+� )

�

� � ≤ �, � ≤ � }, (7)

ACM Trans. Des. Autom. Electron. Syst.
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Fig. 8. Illustration of topology-aware query mechanism.

where �, � ∈ Z and �� denotes the �-th prototype in ��
(�+�,�+� )

. The most similar prototype to ��
(�,�)

is selected

based on a similarity computation, and the corresponding hotspot likelihood score is computed as:

��
�,(�,�) = 1 − max

�∈Ω��

(�,�)

(Sim(��(�,�) , �)), (8)

where��
�,(�,�)

represents the hotspot likelihood score at position (�,�) in the shape-aware likelihood map��
� .

As shown in Figure 7, the receptive ields of the query vector and the corresponding searched prototypes allow

for the recognition of small shape deformations, thereby enhancing robustness to layout variations.

3.3.2 Topology-aware uery. In the prototype search space, the vectors retrieved by the shape-aware query

consider only the legality constraints associated with the query’s shape, without incorporating information

regarding the local topological context. To address this limitation, YONN introduces a topology-aware query

mechanism. This mechanism deines a set of four-neighbor prototypesN��

4 (�,�) centered at the (�,�) coordinate

within the prototype bank:

N��

4 (�,�) = {�� ∈ �
�
(�+�,�+� )

�

� |� | ≤ 1, |� | ≤ 1}. (9)

Subsequently, an inverse search procedure is conducted, mapping from prototype features back to query features,

to identify the vector within the four-neighborhood of a given query vector that exhibits the highest similarity to

the prototype. The local search space is formally deined as:

Ω
��

(�,�)
= {��(�+�,�+� )

�

� |� | ≤ 1, |� | ≤ 1}. (10)

This inverse search operation enforces local topological consistency by validating whether the query vector

aligns with its neighboring prototypes. Based on the best-matching neighbor, the hotspot likelihood score is then

computed as:

��
�,(�,�) = min

��
(�,�)
∈Ω

��

(�,�)

(1 − max
�∈N��

4 (�,�)

(Sim(��(�,�) , �))), (11)

where��
�,(�,�)

denotes the topology-aware hotspot likelihood at location (�,�) within the likelihood map��
� .

3.3.3 Aggregation. To improve hotspot detection accuracy, we integrate the shape-aware hotspot likelihood

map (��
� ) and the topology-aware hotspot likelihood map (��

� ) to generate the inal hotspot likelihood map (�� )

at the �-th layer. This integration is performed via a weighted summation, deined as:

��
= ���

� + (1 − �)�
�
� . (12)

ACM Trans. Des. Autom. Electron. Syst.
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Algorithm 2 Query Process

Require: The test layout �� , the frozen CNN F (·), the stored prototype bank � ;

Ensure: The inal hotspot likelihood score�� ���� ;

1: {�� }�
�=1
← F (��), The query feature extraction;

2: Initialize hotspot likelihood map� ← {};

3: for � ∈ [1, �) do

4: ��
� ← ShapeQuery(�� ,�� );

5: ��
� ← TopologyQuery(�� ,�� );

6: �� ← Computing the �-th hotspot likelihood map by Equation(12);

7: � ← � ∪ {�� };

8: end for

9: �� ���� ← Computing the inal hotspot likelihood score by Equation(13);

10: return �� ����

ShapeQuery(�� ,�� ):

11: � � ,� � ← Height and width of the �� ;

12: for (�,�) ∈ [0, � � ) × [0,� � ) do

13: Ω
��

(�,�)
← Computing the search space by Equation(7);

14: ��
�,(�,�)

← Computing the hotspot likelihood maps on (�,�) by Equation(8);

15: end for

16: return ��
�

TopologyQuery(�� ,�� ):

17: � � ,� � ← Height and width of the �� ;

18: for (�,�) ∈ [0, � � ) × [0,� � ) do

19: N��

4 (�,�) ← Computing the four-neighbor prototypes by Equation(9);

20: Ω
��

(�,�)
← Computing the search space by Equation(10);

21: ��
�,(�,�)

← Computing the hotspot likelihood maps on (�,�) by Equation(11);

22: end for

23: return ��
�

The set of hotspot likelihood maps {�� }�
�=1

, collected across multiple layers with varying spatial resolutions,

is subsequently up-sampled to a common resolution. Following this, the up-sampled maps are aggregated by

element-wise summation. Motivated by industrial anomaly detection [36, 62], we apply a Gaussian blur ilter to

the aggregated hotspot likelihood map to further smooth the prediction. The inal hotspot likelihood score,�� ���� ,

is obtained by extracting the global maximum value from the blurred map. The overall process is mathematically

formulated as:

�� ���� = max
�∈� 0,�∈� 0

(G� (

�︁

�=1

UpSample(H0,W0 ) (�
� ))), (13)

where G� (·) denotes the application of a Gaussian blur with kernel standard deviation � , and UpSample(H0,W0 ) (·)

represents the up-sampling operation to the target resolution (� 0,� 0).
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3.3.4 Optional refinement under a few available hotspots. In practical scenarios, entirely disregarding hotspot

samples can limit the model’s ability to capture discriminative features, potentially degrading detection per-

formance. Thus, YONN can be reined by incorporating a few available hotspot samples. A prototype bank is

constructed from few hotspot samples using the same methodology as for non-hotspots. During inference, the

query sample irst estimates its likelihood of being a hotspot using the non-hotspot prototype bank. Subsequently,

the same inference procedure is applied using the hotspot prototype bank. The inal hotspot probability �̄ is

computed by aggregating the two likelihoods as follows:

�̄ = ���ℎ
� ���� + (1 − �) (1 −�

ℎ
� ���� ). (14)

where � is a balancing weight between the two queries,��ℎ
inal

denotes the inference result from the non-hotspot

prototype bank, and�ℎ
inal

denotes the result from the hotspot prototype bank.

3.4 On-the-fly Update

In modern design houses, frequent product updates and iterative design modiications often result in the degra-

dation or failure of previously trained hotspot detectors. As shown in Figure 3, adapting these detectors to new

designs typically requires mixing historical and newly collected data followed by full model retraining. However,

as the volume of layout data continues to grow, this retraining approach becomes increasingly impractical due to

the associated computational cost and data management complexity. In contrast, YONN adapts to new designs

through simple expansion of the prototype bank, thereby ofering a scalable and eicient solution for hotspot

detection across evolving design iterations. Speciically, given a new set of layout data {� new
� }��=1, YONN extracts

new features � new using the same prototype generation network F (·). To address potential concerns regarding

the accumulation of redundant prototypes and the scalability of the query process, YONN incorporates the

prototype sampling strategy during each update. Speciically, when new non-hotspot features are extracted

and merged into the existing prototype bank � ′new,� ← �� ∪ � new,� , the combined bank undergoes the reined

prototype resampling process by using Algorithm 1, with � ′new,� as the input. This ensures that only high-density

core representations and diverse boundary variants are retained, efectively eliminating redundant or overlapping

prototypes. As a result, the size of the prototype bank remains compact and representative, even after multiple

design updates.

4 Experiments

All experiments were performed using the PyTorch framework and the NVIDIA CUDA toolkit on a high-

performance computing system equipped with Intel Xeon Platinum 8462Y+ 128-core processors and a single

NVIDIA H800 GPU featuring 80 GB of memory. This setup provided the computational resources necessary for

eicient model training and evaluation.

4.1 Datasets

This article utilizes three benchmark datasets that include both metal layer and via layer layouts. The details of

these benchmarks are summarized as follows:

• The ICCAD2012 benchmark[43] consists of four layout datasets. The irst dataset, ICCAD2012-1, is derived

from a 32 nm process with a single metal layer, while ICCAD2012-2, ICCAD2012-3, ICCAD2012-4, and

ICCAD2012-5 are based on a 28 nm process. Consistent with the methodology described in [14], each dataset

is divided into training and testing subsets. Each layout clip spans a ixed dimension of 4.8 �m × 4.8 �m.

For clips labeled as hotspots, a central region measuring 1.2 �m× 1.2 �m is explicitly deined as the hotspot

area.
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Table 1. Statistics of the Benchmark.

ICCAD2012
ICCAD2016

ICCAD2020

-1 -2 -3 -4 -5 Via-1 Via-2 Via-3 Via-4

Training #HS 99 176 909 98 26 1300 3430 1029 614 39

Training #NHS 340 5285 4643 4452 2716 9935 10290 11319 19034 23010

Testing #HS 226 499 1835 189 42 1301 2267 724 432 26

Testing #NHS 319 4143 3484 3370 2110 2484 6878 7489 12614 15313

• The ICCAD2016 benchmark[42] has been adapted to complywith design rules relevant to extreme ultraviolet

(EUV) lithography for metal layers. Lithographic hotspot simulation and analysis annotate hotspot locations

directly within the layout iles. For classiication, hotspot samples were randomly cropped from the labeled

hotspot regions in ICCAD2016, while non-hotspot samples were randomly cropped from regions outside

these hotspot areas. Each cropped layout clip had a resolution of 512×512 pixels. Furthermore, we introduce

an enhanced data augmentation pipeline that allows multiple hotspot instances to be included within a

single cropped layout image, thereby increasing complexity and the diiculty of the classiication task.

• The ICCAD2020 benchmark[15] provides layout clips that include via patterns. In this study, we utilize

four datasets (Via 1 to Via 4) extracted from the benchmark. The technology node of the benchmark is

below 45 nanometers. Each individual dataset within the ICCAD2020 benchmark exhibits varying densities

of via patterns. For experimental purposes, each dataset is partitioned into training and testing subsets.

Further details on the ICCAD2020 benchmark can be found in [15].

4.2 Implementation Details

In this article, YONN employs a uniform transformation of layout clips with varying resolutions, converting them

into a squish pattern representation of size 3 × 128 × 128 using the adaptive squish pattern method described in

[55]. In the prototype generation stage, the pre-trained model leverages Wide-ResNet101[58] as a ixed prototype

extractor, which is a widely adopted architecture in DL. To reine the prototypes, YONN utilizes feature maps from

three layers (L1, L2, L3) of the Wide-ResNet101, thereby preserving low-level geometric details while capturing

high-level semantic representations. The batch size for the prototype generation is 4. In the query stage, the

batch size is 256. For YONN, the prototype sample size is set to � = 60 to balance accuracy and storage, the query

balancing parameter is � = 0.5, the hotspot aggregation weight is � = 0.3, and the shape-aware search-space

parameter is set to � = 5.

To evaluate the efect of incorporating a small number of hotspot samples, we adopt a purely random hotspot

sampling strategy consistent with [7], ensuring comparability with prior work. For this setting, three independent

random sampling experiments are conducted, and the corresponding mean and standard deviation of the results

are reported.

4.3 Results Comparison on ICCAD2012 Benchmark

To evaluate the performance of the proposed method, we conduct a comprehensive comparison using the

ICCAD2012 benchmark. As shown in Table 2, the method proposed by TODAES’2019 achieves a perfect ACC of

100.00% on ICCAD2012-1 but exhibits relatively high FAR across the other datasets. Speciically, TODAES’2019

demonstrates an average FAR of 29.88% on ICCAD2012-1, and the FAR ranges from 2.04% to 46.67% for the

remaining datasets. Meanwhile, the method in DAC’2021 shows good performance with an ACC of 99.40% on

ICCAD2012-2 and a signiicantly reduced FAR of 2.50%. However, its performance drops on ICCAD2012-3, where
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Table 2. Comparison on ICCAD2012 benchmark with the state-of-the-art models (%).

Method
Usage of ICCAD2012-1 ICCAD2012-2 ICCAD2012-3 ICCAD2012-4 ICCAD2012-5

Time(s)
hotspots ACC FAR ACC FAR ACC FAR ACC FAR ACC FAR

TODAES’2019[18]

100%

100.00 29.88 99.00 3.48 98.06 19.52 98.31 6.41 95.12 2.04 330.00

DAC’2021[44] - - 99.40 2.50 98.10 46.67 99.40 9.97 97.60 1.61 -

TCAD’2022[14] 99.56 73.85 98.20 1.59 99.90 12.66 94.18 4.93 95.24 1.14 92.99

IWAPS’2022[25] 99.60 37.64 98.20 2.82 98.10 6.71 93.90 10.65 98.60 11.75 -

TODAES’2025[47] - - 99.40 3.69 97.70 4.18 93.90 1.57 98.60 2.94 26.10

Ours 99.56 4.70 99.60 1.23 99.18 3.59 98.41 1.45 97.62 1.09 31.12

TCAD’2020[7]

10% - - 96.91 23.36 97.77 5.45 54.35 13.47 25.85 2.80

-30% - - 96.95 7.36 97.83 5.06 72.54 8.37 40.49 2.04

50% - - 97.99 7.41 97.83 5.42 81.69 7.60 88.29 5.07

0% 90.27 15.67 90.32 10.86 90.24 12.60 92.06 11.04 95.24 10.33 15.49

98.67 7.63 98.06 2.77 98.02 4.38 95.42 3.01 94.44 1.96
20.72

Ours
30%

(±1.17) (±1.27) (±0.81) (±1.06) (±0.54) (±0.50) (±0.81) (±1.03) (±3.63) (±0.52)

Table 3. Comparison on ICCAD2016 benchmark with the state-of-the-art unsupervised method in deep learning (%).

ICML’2018[37] CVPR’2022[36] CVPR’2023[30] WACV’2024[2] ECCV’2024[24] Ours

ACC 7.84 30.13 17.06 4.77 40.05 88.09

FAR 72.14 81.24 60.06 41.22 39.94 15.90

it achieves only 98.10% ACC and a high FAR of 46.67%. The TODAES’2025 shows the best performance with the

ACC of 99.40% on ICCAD2012-1 and maintaining relatively low FAR across diferent datasets. Notably, all of

these methods operate in a fully supervised setting, requiring extensive hotspot annotations. In contrast, YONN

without hotspot samples (usage of hotspots 0%) achieves competitive accuracy, ranging from 90.24% to 95.24%,

with FAR between 10.33% and 15.67%, representing a favorable ACCśFAR trade-of compared to methods such as

IWAPS’2022 and TCAD’2022, which exhibit higher FAR despite good ACC. We further compare with TCAD’2020,

which employs a semi-supervised strategy. Its performance improves as more labeled data are used, but only

becomes comparable to state-of-the-art fully supervised methods when trained with 50% of the available data.

Remarkably, YONN, when utilizing only 30% of the hotspot samples, achieves ACC and FAR competitive with the

best supervised approaches.

In addition to detection accuracy and FAR, inference eiciency is an important consideration for practical

deployment. As shown in the Time(s) column of Table 2, YONN demonstrates substantial runtime advantages. For

instance, in the fully unsupervised setting (0% hotspots), YONN requires only 15.49 seconds on the ICCAD2012

benchmark, compared to 330.00 seconds for TODAES’2019 and 92.99 seconds for DAC’2021. Even with 30%

hotspot usage, YONN completes inference in 20.72 seconds, remaining faster than most supervised baselines.

Figure 9 illustrates the variation of ACC and FAR on ICCAD2012-2, -3, and -4 as the proportion of hotspot

samples increases. With very few hotspot samples, YONN’s performance improves rapidly as more samples are

added, with larger standard deviations in early stages relecting the impact of random sampling. Nonetheless, the

standard deviation remains within 2% overall. At approximately 30% hotspot coverage, YONN reaches performance

comparable to the TODAES’2025.

ACM Trans. Des. Autom. Electron. Syst.



You Only Need Non-hotspot: An Unsupervised Training-Free Method for Layout Hotspot Detection • 15

Fig. 9. Variation of ACC and FAR on ICCAD2012-2, -3, and -4 as the proportion of hotspot samples increases.

Fig. 10. Comparison of model performance and complexity on ICCAD2016.

4.4 Results Comparison on ICCAD2016 Benchmark

To evaluate the efectiveness of YONN, we benchmarked its performance against several widely adopted DL-based

architectures on the ICCAD2016 dataset, including ResNet-50[17] (R-50), HRNet[46], EicientNet[41] (Ef-Net),

Vision Transformer[12] (ViT-16), and Swin Transformer[29] (Swin-T). The evaluation metrics include ACC, FAR,

inference speed in frames per second (FPS), and computational complexity measured by GFLOPs. As shown

in Figure 10(a), YONN demonstrates competitive accuracy, achieving an ACC of 88.09%, which is second only

to HRNet’s top performance of 90.09%. YONN outperforms other models such as ViT-16 (69.87%) and Swin-T

(61.49%) by a substantial margin. Regarding the FAR metric, YONN shows a higher FAR compared to R-50, HRNet,

and EicientNet, yet it remains lower than that of Swin-T and ViT-16. Speciically, YONN achieves a FAR of

15.91%.

Regarding computational eiciency, YONN demonstrates a balance between accuracy and resource require-

ments. Figure 10(b) compares all models in terms of FPS and GFLOPs. YONN achieves an inference speed of
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Table 4. Comparison on ICCAD2020 benchmark with the state-of-the-art models (%).

Method
Usage of Via-1 Via-2 Via-3 Via-4

hotspots ACC FAR ACC FAR ACC FAR ACC FAR

TCAD’2020[21]

100%

89.85 27.42 73.00 16.32 73.38 27.00 73.08 99.84

TCAD’2022[15] 93.42 23.10 86.32 14.69 88.20 16.69 80.77 1.00

DATE’2022[39] 95.41 25.04 90.33 20.12 89.81 15.28 84.62 2.61

DAC’2024[9] 95.76 24.75 91.30 15.50 91.43 12.98 92.31 1.99

TCAD’2025[8] 95.56 23.80 90.74 17.67 89.81 14.27 88.46 2.34

Ours 96.25 19.21 92.40 14.54 92.36 13.66 88.46 2.04

CVPR’2022[36] 39.35 64.45 49.31 47.96 12.96 55.42 30.77 77.86

ECCV’2024[24]
0%

43.54 62.71 29.28 74.94 25.69 52.58 34.62 59.58

0% 86.68 21.05 87.02 23.52 82.41 25.10 84.62 10.75

94.28 20.35 91.11 16.82 90.20 14.18 87.18 3.20Ours
30%

(±1.44) (±1.61) (±0.89) (±1.15) (±1.40) (±0.67) (±5.88) (±0.85)

Fig. 11. Variation of ACC and FAR on Via-1, -2, and -3 as the proportion of hotspot samples increases.

378.5 FPS with a computational cost of only 7.46 GFLOPs, indicating its eiciency for real-time deployment

scenarios. In contrast, HRNet, while exhibiting slightly higher accuracy, operates at a lower FPS (67.11) and incurs

a signiicantly higher computational cost (151.64 GFLOPs). Similarly, R-50 and ViT-16 exhibit higher GFLOPs and

lower FPS than YONN, further highlighting the eiciency advantage of our approach.

We additionally compared YONN with state-of-the-art unsupervised DL methods, including ICML’2018,

CVPR’2022, CVPR’2023, WACV’2024, and ECCV’2024. As shown in Table 3, the results demonstrate that existing

unsupervised approaches struggle to achieve robust hotspot detection, whereas YONN consistently delivers

higher detection accuracy and a lower FAR than these baselines.

ACM Trans. Des. Autom. Electron. Syst.



You Only Need Non-hotspot: An Unsupervised Training-Free Method for Layout Hotspot Detection • 17

Fig. 12. Illustration of the efects of diferent architecture in F (·).

4.5 Results Comparison on ICCAD2020 Benchmark

We present a detailed comparison of our method with state-of-the-art models on the ICCAD2020 benchmark. As

shown in Table 4, YONN demonstrates the best performance across all via datasets with the usage of 100% hotspots

samples. Moreover, in the fully unsupervised setting, YONN achieves competitive performance across all via

datasets, attaining accuracies of 86.68%, 87.02%, 82.41%, and 84.62% for Via-1, Via-2, Via-3, and Via-4, respectively,

with corresponding FAR values of 21.06%, 23.52%, 25.10%, and 10.75%. We additionally compared state-of-the-art

unsupervised detection methods in deep learning, including CVPR’2022 and ECCV’2024. In the unsupervised

setting, these methods fail to provide efective hotspot detection on via data, exhibiting extremely low accuracy

and excessively high FAR. Notably, with the usage of only 30% hotspot samples, YONN’s performance approaches

that of the latest supervised method (TCAD’2025), highlighting its efectiveness and adaptability. Figure 11 shows

how ACC and FAR change as the proportion of hotspot samples increases in the Via-1, 2, and 3 datasets. Figure

11 further illustrates the variation in ACC and FAR as the proportion of hotspot samples increases for Via-1,

Via-2, and Via-3.

4.6 Ablation Study

4.6.1 Impact of Diferent Architecture for Prototype Generation Network F (·). To validate the efectiveness of

Wide-ResNet101 (WR-101) as a prototype generative network, we conducted a comparative study across various

ResNet-based CNNs. Speciically, we evaluated ResNet18 (R-18), ResNet34 (R-34), ResNet50 (R-50), ResNet101

(R-101), Wide-ResNet50 (WR-50), and WR-101 on the ICCAD2012-1 dataset, as shown in Figure 12(a). The results

indicate that increasing network depth generally leads to improved ACC and reduced FAR, with Wide-ResNet

architectures consistently outperforming standard ResNet. Furthermore, in the YONN framework, we preserve

features extracted from multiple layers to enhance prototype reinement. Figure 12(b) presents an analysis of the

impact of selecting diferent layers for prototypes. The original ResNet-based architecture comprises ive layers,

where deeper layers provide lower-resolution feature maps with richer semantic information. Our experiments

indicate that while incorporating features from an increasing number of layers initially improves performance,

inclusion of features from the fourth layer (L4) leads to a noticeable decline. This degradation is attributed to the

predominance of geometric properties over semantic information in layout design, which are less efectively

captured by lower-resolution, higher-level features. Consequently, YONN optimally retains features from the

irst through third layers (L1, L2, L3).
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Table 5. Impact of the prototype sampling size � on performance. "w/o. Sampling" indicates the results obtained when

prototype sampling is not applied. PSS refers to the prototype storage space. The units for ACC and FAR are percentage

points (%).

w/o. Sampling �=40 �=50 �=60 �=70

ACC FAR PSS ACC FAR PSS ACC FAR PSS ACC FAR PSS ACC FAR PSS

91.15 14.73 638M 88.50 16.30 76M 89.38 15.99 94M 90.27 15.67 113M 89.82 15.05 132M

Table 6. Impact of the diferent clustering strategies. PG-Time refers to the prototype generation time. The units for ACC

and FAR are percentage points (%).

KMeans[32] DBSCAN[13] OPTICS[1] HDBSCAN[3]

ACC FAR PG-Time ACC FAR PG-Time ACC FAR PG-Time ACC FAR PG-Time

88.94 17.55 55.96(s) 88.05 16.93 56.71(s) 89.82 15.99 56.67(s) 90.27 15.67 23.38(s)

Fig. 13. Impact of the hyperparameter in query space on ICCAD2012-3.

4.6.2 Impact of Prototype Sampling Size � . We investigate the impact of the prototype sampling size � for YONN

performance on ICCAD2012-1, as detailed in Table 5. The "w/o. Sampling" setting represents the coniguration

where all available prototypes are retained without any sampling, yielding the highest ACC of 91.15% and the

lowest FAR of 14.73%. However, this comes at a substantial prototype storage space (PSS) cost of 638MB, which

is impractical for resource-constrained deployment scenarios. By contrast, applying prototype sampling with

varying values of � signiicantly reduces the storage cost. For instance, setting � = 40 results in a compression

of PSS to just 76MBÐan 88.1% reduction compared to the baseline. As � increases from 40 to 70, both ACC and

FAR improve gradually, demonstrating the trade-of between model compactness and detection performance. At

� = 60, the model achieves a balance with an ACC of 90.26%, a FAR of 15.67%, and a moderate PSS of 113MB.

4.6.3 Impact of Diferent Clustering Strategies. In this study, we evaluate the inluence of various clustering

strategies on the performance and eiciency of our prototype generation process. Speciically, we compare four

widely adopted clustering algorithms, KMeans [32], DBSCAN [13], OPTICS [1], and HDBSCAN [3], to investigate

their efects on ACC, FAR, and prototype generation time (PG-Time). Table 6 summarizes the experimental results.

HDBSCAN demonstrates superior performance by achieving the highest ACC of 90.27% and the lowest FAR of

15.67%. Notably, it also requires the shortest prototype generation time of 23.38 seconds, indicating enhanced

computational eiciency compared to other methods.
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Fig. 14. Impact of � and � .

Fig. 15. Receiver Operating Characteristic (ROC) curves of YONN evaluated across multiple benchmark datasets, illustrating

the trade-of between true positive rate and false positive rate for diferent operating thresholds.

4.6.4 Impact of the Hyperparameter in uery Space. To evaluate the inluence of the shape-aware search space

parameter � , we conduct an ablation study on three representative layers (L1śL3) of YONN. As shown in Figure 13,

increasing the search radius generally enhances ACC while reducing the FAR. For L1, optimal performance is

observed when � = 13, whereas for L2 and L3, the best results are attained at � = 5. These diferences relect

the varying representation of the layout features across layers. Notably, an excessively large search space in

lower-level layers can degrade performance due to the introduction of noisy or irrelevant structural information,

which may impair the efectiveness of shape-aware query.

In addition, we also explore the impact of diferent neighborhood conigurations on model performance,

including 4-neighborhood, 8-neighborhood, and D-neighborhood strategies. As shown in Figure 13, the 4-

neighborhood and 8-neighborhood models yield comparable ACC (90.25% and 90.30%, respectively) and low FAR

(12.60% and 13.55%), while maintaining high runtime eiciency with inference speeds of 379.93 FPS and 212.76

FPS. By contrast, the D-neighborhood coniguration exhibits a noticeable drop in ACC (84.5%) and a signiicant

increase in FAR (25.32%), along with reduced runtime performance (354.60 FPS). These results suggest that while

expanding the search range may ofer marginal gains in accuracy for some layers, overly broad search spaces

introduce noise and degrade model performance.

4.6.5 Impact of the Hyperparameter � and � . The weight � in Eq. (12) balances shape-aware and topology-aware

queries. As shown in Figure 14, larger � favors shape similarity, improving ACC but raising FAR, while smaller �

emphasizes topology, reducing FAR but missing shape-sensitive hotspots. Across datasets, � = 0.5 yields the best

trade-of. The parameter � in Eq. (14) balances predictions from non-hotspot and hotspot prototype banks when

few hotspot samples are available. Higher � beneits when hotspot coverage is sparse; lower � is preferable with

richer hotspot data. The optimal value � = 0.3 consistently achieves a favorable ACCśFAR balance.
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Table 7. Efectiveness of query mechanisms on ICCAD2012-1. (%).

w./ Shape-aware Query w./ Topology-aware Query YONN

ACC FAR ACC FAR ACC FAR

88.50 18.18 86.73 17.87 90.27 15.67

Table 8. Performance on ICCAD2012 for the update(%).

Base Dataset ICCAD2012-1 ICCAD2012-2 ICCAD2012-3 ICCAD2012-4 ICCAD2012-5

for Prototype Generation ACC FAR ACC FAR ACC FAR ACC FAR ACC FAR

1 90.27 15.67 - - - - - - - -

1+2 89.38 16.30 89.38 11.05 - - - - - -

1+2+3 89.82 15.67 90.18 11.92 89.37 14.18 - - - -

1+2+3+4 90.27 15.05 89.98 10.89 89.92 12.60 91.01 11.04 - -

1+2+3+4+5 88.94 16.61 89.78 10.89 90.19 13.35 90.48 12.88 92.86 10.05

4.6.6 Impact of the threshold �ℎ for hotspot classification. The selection of the decision threshold �ℎ plays a

crucial role in determining the trade-of between detection accuracy and false alarm rate in hotspot classiication.

It is important to emphasize that this thresholding step is not part of the training phase; instead, it is applied

exclusively during the query stage of testing to decide whether a given sample is classiied as a hotspot or a

non-hotspot.

To determine the optimal threshold, we adopt a Receiver Operating Characteristic (ROC) curve analysis, which

plots the true positive rate (equivalent to ACC in hotspot detection) against the false positive rate (equivalent to

FAR) for varying threshold values. As illustrated in Figure 15, the optimal operating point is selected to achieve a

balanced compromise between high ACC and low FAR. Across the ICCAD2012 and ICCAD2020 benchmarks,

this strategy consistently yields optimal thresholds in a narrow range between 0.4630 and 0.5077. The stability

of these optimal thresholds across diferent datasets indicates that the YONN framework is robust to threshold

selection. Consequently, in practical deployment scenarios, a default threshold of �ℎ = 0.5 can be adopted without

dataset-speciic tuning, simplifying implementation while preserving detection performance.

4.6.7 Efectiveness ofuery Mechanisms. To evaluate the contribution of individual query mechanisms in YONN,

we conducted an ablation study focusing on the shape-aware and topology-aware query components. Table 7

summarizes the ACC and FAR achieved when incorporating each query type independently, as well as the overall

performance of YONN. When using only the shape-aware query module, the model achieves an ACC of 88.50%

and a FAR of 18.18%. In contrast, the topology-aware query mechanism yields an ACC of 86.73% with a slightly

improved FAR of 17.87%. These results indicate that both query types contribute positively to model performance,

with the shape-aware mechanism being more efective in enhancing accuracy and the topology-aware variant

ofering a modest reduction in false acceptances. The YONN, which integrates both query strategies within a

uniied framework, signiicantly outperforms each coniguration. It achieves the highest ACC of 90.27% and the

lowest FAR of 15.67%.
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Table 9. Performance on ICCAD2020 for the update(%).

Base Dataset Via-1 Via-2 Via-3 Via-4

for Prototype Generation ACC FAR ACC FAR ACC FAR ACC FAR

1 86.68 21.05 - - - - - -

1+2 86.46 22.08 86.74 23.38 - - - -

1+2+3 86.90 20.94 87.15 23.62 81.94 26.26 - -

1+2+3+4 86.41 21.33 86.05 23.75 82.18 25.11 84.62 11.11

4.7 Performance for On-the-fly Update

To evaluate the adaptability and performance of our framework under incremental data inclusion, we conducted

a progressive update experiment on ICCAD2012 and ICCAD2020.

As shown in Table 8, initially, only ICCAD2012-1 is used for prototype generation, yielding an ACC of 90.27%

and a FAR of 15.67%. As additional datasets are integrated in sequence (ICCAD2012-2 through ICCAD2012-5),

both ACC and FAR are observed for each combination. The inclusion of ICCAD2012-2 (1+2) leads to a slight

reduction in ACC for ICCAD2012-1 (89.38%), but a marked improvement for ICCAD2012-2 (89.38%) with a

reduced FAR of 11.05%. Upon the addition of ICCAD2012-3 (1+2+3), ACC across all three datasets stabilizes above

89%, demonstrating the robustness of the model during incremental learning. The integration of ICCAD2012-4

(1+2+3+4) results in a further improvement, achieving over 91% ACC on ICCAD2012-4 and maintaining stable

performance across previous datasets. Finally, with the full inclusion of ICCAD2012-5 (1+2+3+4+5), the YONN

reaches its highest ACC of 92.86% on ICCAD2012-5, along with the lowest observed FAR of 10.05%.

As shown in Table 9, starting with Via-1 alone, YONN achieves an ACC of 86.68% and a FAR of 21.05%.

Incorporating Via-2 (1+2) slightly decreases ACC on Via-1 (86.46%) while marginally improving Via-2 (86.74%)

with a FAR of 23.38%. The addition of Via-3 (1+2+3) maintains stable ACC on the irst two datasets and yields

81.94% ACC on Via-3, albeit with a higher FAR of 26.26%. With the full integration of Via-4 (1+2+3+4), ACC on

Via-4 reaches 84.62% with a FAR of 11.11%, while earlier datasets maintain performance close to their initial

values.

These results indicate that the proposed YONN efectively accommodates new design data while maintaining

generalization across earlier distributions.

5 Conclusion

This paper introduces YONN, an unsupervised hotspot detection algorithm that utilizes only non-hotspot samples

and requires no training. Speciically, YONN is based on a novel paradigm involving prototype-based decision

boundary and query inference for hotspot detection. Initially, YONN employs a frozen CNN to extract multi-scale,

ine-grained prototype features. Then, a cluster-boundary based sampling method is proposed to reduce the size

of the prototype bank while preserving competitive performance. During the query phase, YONN performs both

shape-aware and topology-aware queries based on layout features. The shape-aware query assesses the hotspot

likelihood in local features, while the topology-aware query compares features within the neighbors of the layout.

Since YONN is training-free, it can adaptively update the prototype bank for new products or designs. Moreover,

when a limited number of hotspot samples is available, YONN can be augmented with a supplementary hotspot

prototype bank, further improving classiication accuracy. Extensive experiments demonstrate that YONN’s

performance is within 10% of fully supervised approaches, and with only 30% of hotspot-labeled data, it surpasses
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state-of-the-art methods. Future work will focus on extending YONN’s applicability across advanced process

nodes and improving computational eiciency.
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